求由下列方程所确定的函数z=f(x,y)的全微分:
(1)x2+y2+z2=2z;
(2)xcosy+ycosz+zcosx=0.
【正确答案】:(1)设F(X,y,z)=x2+y2+z2-2z,则: Fx=2x,Fy=2y,Fz=2z-2 ∂z/∂x=-(Fx/Fz)=-[2x-(2z-2)]=x/(1-z) ∂z/∂y=-(fy/Fz)=-[2y/(2z-2)]=y/(1-z) (2)设F(x,y,z)=xcosy+ycosz+zcosx,ze: Fx=cosy-zsinx,Fy=-xsiny+cosz,Fz=-ysinz+cosx ∂z/∂x=-(Fx/Fz)=(zsinx-cosy)/(cosx-ysinz) ∂z/∂y=-(Fy/Fz)=(xsinx-cosz)/(cosx-ysinz) ∴dz =[(cosy-zsinx)dx+(cosz-xsiny)dy]/(ysinz-cosx)
发表评论 取消回复