求
{x1+x2-x3+2x4+x5=0
{x3+3x4-x5=0的通解.
{2x3+x4-2x5=0
【正确答案】:A= (1 1 -1 2 1 0 0 1 3 -1 0 0 2 1 -2) → (1 1 0 5 0 0 0 1 3 -1 0 0 0 -5 0) → (1 1 0 5 0 0 0 1 3 -1 0 0 0 1 0) → (1 1 0 0 0 0 0 1 0 -1 0 0 0 1 0) 同解方程组为 {x1+x2=0 {x3-x5=0, {x4=0 即 {x1=-x2 {x3=x5 {x4=0 令x2,x5为自由未知量,分别取 (x2 x5) = (1 0), (0 1), 可得基础解系 ξ1= (-1 1 0 0 0), ξ2= (0 0 1 0 1) 于是,线性方程组的通解为k1ξ1+k2ξ2(k1,k2为任意实数).
发表评论 取消回复