设z=f(y/x,x-2y),其中f具有二阶连续偏导数,求∂2z/∂x∂y,∂z/∂y
【正确答案】:设u=y/x,υ=x-2y,则z=f(u,υ) ∂z/∂x=(∂f/∂u)•(∂u/∂x)+(∂f/∂υ)•(∂υ/∂x)=f´u •1-(y/x2)+f´ υ•1=-(y/x2) F´ u+ f´ υ ∂2z/∂x∂y=[∂/(∂z/∂x)]/ ∂y=-(1/x2)f ´u-(y/ x2)f" uu•1/x-(y/ x2)f" uυ•(-2)+f" υυ •(-2)+f" uu•1/x=-(1/x2)f ´u-(y/ x3)f" uu+(2y/x2)f ´uυ-2f" υυ+(1/x) f" υu∂z/∂x=(∂f/∂u)•(∂u/∂y)+(∂f/∂υ)•(∂υ/∂y)=(1/x)f´u-2 f´ υ,故∂2z/∂y2=1/x[f" uu•1/x+f"uυ•(-2)]-2[f" υυ•(-2)+ f" υu•(1/x)]=(1/x2) f" uu-(2/x)f”uυ+4f"υυ -(2/x) f"υu. 因为f有二阶连续偏导数,所以f”υu.= f"uυ,故∂2z/∂y2=(1/x2) f" uu-(4/x)f"uυ+4f"υυ.
发表评论 取消回复