证明:2的算术平方根是无理数
【正确答案】:假如根号2是有理数,那么它一定可以用一个最简的(不能再约分的)分数m/n表示则:m^2/n^2=2
所以m^2=2*n^2所以m是偶数
假设m=2k,那么2*n^2=4*k^2
所以n^2=2*k^2
所以说n也是偶数
既然m, n都是偶数,那么m/n就不是最简分数,与原设相矛盾
故根号2是无理数

点赞(0) 打赏

评论列表 共有 0 条评论

暂无评论

微信小程序

微信扫一扫体验

立即
投稿

微信公众账号

微信扫一扫加关注

发表
评论
返回
顶部